Questio de aqua et terra (35)

(35) Quod illa sequantur ex conclusione, sic declaro: Ponamus per contrarium sive oppositum consequentis illius quod est in omni parte equaliter distare, et dicamus quod non distet; et ponamus quod ex una parte superficies terre distet per viginti stadia, ex alia per decem: et sic unum emisperium eius erit maioris quantitatis quam alterum: nec refert utrum parum vel multum diversificentur in distantia, dummodo diversificentur. Cum ergo maioris quantitatis terre sit maior virtus ponderis, emisperium maius per virtutem sui ponderis prevalentem impellet emisperium minus, donec adequetur quantitas utriusque, per cuius adequationem adequetur pondus; et sic undique redibit ad distantiam quindecim stadiorum; sicut et videmus in appensione ac adequatione ponderum in bilancibus. (35) That these results follow from the conclusion I thus explain: Let us make an assumption contrary, or opposite, to this consequence (namely, that it is equidistant at every part), and let us say it is not equidistant. And let us suppose that at one point the surface of the earth is distant twenty stadia, and at another point ten, so that one of its hemispheres will exceed the other in quantity. Nor does it matter whether the difference in distance be little or much, so long as there is a difference. Since, then, there is more virtue of gravity in the greater quantity of earth, the greater hemisphere, by the superior virtue of its weight, will shove the lesser hemisphere until the quantity of each is equalised, by which equalising their weight will be equalised also; and thus the distance on either side will be reduced to fifteen stadia, as we see when we add weights to the balances to bring them to equality.